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Abstract

This paper explores the hypothesis that the area of a marketplace, modeled as
a non-equilateral triangle, is directly related to the profit distribution between
unequal-sized firms in arbitrage situations. Arbitrage, the practice of exploiting
price differences across different markets, is a fundamental concept in finance and
economics. Traditional arbitrage theories primarily focus on price discrepancies,
often neglecting the structural aspects of the marketplace. By introducing a ge-
ometric framework enhanced with integral calculus, this paper aims to analyze
how market structure influences economic interactions and arbitrage opportu-
nities. The hypothesis posits that larger market areas lead to greater profit
disparities due to differential access to arbitrage opportunities. To validate this
hypothesis, we employ spatial analysis, economic modeling, and integral calculus
to examine the relationship between market space and profit distribution. Em-
pirical data from commodity and securities markets will be analyzed to reveal
patterns in profit distribution across different market segments. This approach
offers a novel perspective on market structure and arbitrage, providing valuable
insights for both economic theory and practical trading strategies. The find-
ings suggest significant implications for understanding how spatial factors affect
arbitrage and profit distribution in various market conditions.

Keywords: Arbitrage, Profit Distribution, Market Structure, Ge-
ometric Modeling, Integral Calculus, Market Space, Economic
Interactions, Financial Theory, Spatial Analysis, Economic Mod-
eling, Price Discrepancies, Vertical Integration, Empirical Vali-
dation, Commodities Markets

1 Introduction

Arbitrage, the practice of exploiting price differences in different markets, is central to
financial theory. This paper explores the hypothesis that the area of the marketplace,
modeled as a non-equilateral triangle, is directly related to the profit distribution be-
tween unequal-sized firms in arbitrage situations. We propose a geometric framework,
enhanced by integral calculus, to analyze how market structure influences economic
interactions and arbitrage opportunities.

A case study on commodity arbitrage, such as analyzing arbitrage opportunities in
commodities like oil and gold across different markets (e.g., NYMEX, ICE), can illus-
trate the impact of market space on profit distribution.
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2 Hypothesis and Theoretical Framework

H0: The area of the marketplace, represented as a non-equilateral triangle, has no
significant effect on the profit distribution between unequal-sized firms in an arbitrage
situation.

H1: The area of the marketplace, represented as a non-equilateral triangle, is signif-
icantly related to the profit distribution between unequal-sized firms in an arbitrage
situation.

The theoretical framework for this hypothesis is based on geometric modeling and
integral calculus, integrating principles from geometric arbitrage theory and stochastic
differential geometry. The marketplace is modeled as a non-equilateral triangle in
a Cartesian coordinate system, where the area of the triangle represents the market
space. This geometric representation allows us to analyze how the spatial distribution
of market areas influences arbitrage opportunities and profit distribution.

3 Mathematical Framework

Let the marketplace be represented by a non-equilateral triangle △ABC in a Cartesian
plane. Points A,B, and C denote the vertices of the market space, with each side
representing different market boundaries.

x

y

A

BC
D

Figure 1: △ACD represents Market A, and △ADB represents Market B.

A line segment AD (where D lies on BC) divides the triangle into two segments,
Market A (△ABD) and Market B (△ADC).

The triangle is positioned on a Cartesian coordinate plane to facilitate the analysis of
vertical integration and spatial relationships.

For any triangle △ABC with vertices at (x1, y1), (x2, y2), and (x3, y3), the area A can
be calculated using the determinant method:

A =
1

2
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)| (1)

2



Assume the profit distribution is a function of the area of the market segments. Let
PA and PB denote the profits in Market A and Market B, respectively. The profits can
be modeled as:

PA = k · Area(△ABD) (2)

PB = k · Area(△ADC) (3)

where k is a constant reflecting market conditions and efficiency.

The intersection line AD can be described using the equation of the line in a Cartesian
plane. Suppose A(x1, y1) and D(x, y) are given. The equation of the line AD can be
written as:

y − y1 = m(x− x1) (4)

where m is the slope of the line, given by:

m =
y2 − y1
x2 − x1

(5)

To find the areas of △ABD and △ADC, we use the vertices’ coordinates:

Area(△ABD) =
1

2
|x1(y2 − y) + x2(y − y1) + x(y1 − y2)| (6)

Since Area(△ABC) = Area(△ABD) + Area(△ADC), we have:

1

2
|x1(y2− y3)+x2(y3− y1)+x3(y1− y2)| =

1

2
|x1(y2− y)+x2(y− y1)+x(y1− y2)| (7)

For any triangle △ABC with vertices at (x1, y1), (x2, y2), and (x3, y3), the area A can
be calculated using integral calculus.

Let’s parameterize the sides of the triangle and find the area.

Area(△ABC) =

∫ x3

x1

(∫ ytop(x)

ybottom(x)

dy

)
dx (8)

where ybottom(x) is the equation of the line segment BC and ytop(x) is the equation
of the line segment AB or AC, depending on the x-value.

Now, let’s assume the profit density function p(x, y) is defined over the market space.

The total profit in Market A (△ABD) and Market B (△ADC) can be calculated as:

PA =

∫
△ABD

p(x, y)dA =

∫ xD

x1

(∫ ytop(x)

ybottom(x)

dy

)
dx (9)

PB =

∫
△ADC

p(x, y)dA =

∫ x3

xD

(∫ ytop(x)

ybottom(x)

dy

)
dx (10)

where xD is the x-coordinate of point D.
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The line segment AD can be parameterized to understand the distribution of integra-
tion points as follows:

r(t) = (1− t)A+ tD for 0 ≤ t ≤ 1 (11)

The profit distribution along AD can be found by integrating the profit density function
along this line: ∫

AD

p(x, y)ds =

∫ 1

0

p(r(t))||r’(t)||dt (12)

where ||r’(t)|| is the magnitude of the derivative of r(t).

To empirically validate this hypothesis, data on arbitrage opportunities and profit dis-
tributions in various commodity and securities markets will be collected. Analytical
techniques such as spatial analysis, economic modeling, and integral calculus will be
employed to examine the relationship between market space and profit distribution.
The analysis will assume market efficiency and rational behavior, and it will be based
on a constant profit density function p(x, y).To illustrate the concept of balanced profit
distribution in a non-equilateral triangular market space, we show that the cumula-
tive profit, considering all market segments, results in a net zero, indicating market
efficiency.

Consider the non-equilateral triangle with vertices A, B, and C, where the horizontal
line from C to B passes through point D. The altitude from A intersects the base CB
at D and extends downwards to point E.

The area calculation can be represented by the following integral:∫ D

A

(−x+ y) dx =

∫ D

A

−x dx+

∫ D

A

y dx (13)

Evaluating these integrals separately, we get:∫ D

A

−x dx =

[
−x2

2

]D
A

and

∫ D

A

y dx =

[
y2

2

]D
A

(14)

Combining these results, we obtain:[
−x2

2

]D
A

+

[
−y2

2

]D
A

= −D2

2
+

A2

2
− A2

2
=

A2 −D2 +D2 − A2

2
= 0 (15)

Thus, the total area, when considering both positive and negative contributions, sim-
plifies to zero:

A2 −D2 +D2 − A2

2
= 0 (16)

This result confirms that the integral sums to zero, demonstrating that the calculated
area, adjusted for contributions from different market segments, balances out. There-
fore, the sum of all arbitrage opportunities, when considered across the entire market
space, results in a net zero, indicating balanced profit distribution and market effi-
ciency. By applying geometric and integral calculus to real market data, this proof
supports our hypothesis that market space, represented by a non-equilateral trian-
gle, influences profit distribution in a balanced manner, providing valuable insights for
economic theory and practical trading strategies.
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4 Market Space Dynamics in Commodity Trading

Consider a simplified model of a commodity market represented as a non-equilateral
triangle where the x-axis represents the price of the commodity and the y-axis rep-
resents the quantity traded. The triangular market space is bounded by the price
limits and the maximum quantity that can be traded. The integral calculus approach
can help us understand the profit distribution and arbitrage opportunities within this
market space.

x

y

A = (0,3)

B = (6,0)C = (-2,0)

D=(0,0)

Figure 2: △ACD represents Market A, and △ADB represents Market B.

The area A of △ADB can be calculated geometrically:

A =
1

2
× base× height =

1

2
× 6× 3 = 9. (17)

We can also integrate the function f(x) = 1
2
x+ 3 over the interval from 0 to 6:

∫ 6

0

(
1

2
x+ 3

)
dx =

∫ 6

0

1

2
x dx+

∫ 6

0

3 dx (18)

Evaluating each integral separately, we have:∫ 6

0

1

2
x dx =

1

2

[
x2

2

]6
0

=
1

2

(
36

2
− 0

2

)
=

1

2
× 18 = 9 (19)∫ 6

0

3 dx = 3[x]60 = 3× (6− 0) = 18 (20)

Combining these results:

= 9 + 18 = 27 (21)

Since this integral method calculated area includes the contributions of both price and
quantity over the entire market space, it should be divided by 2 to represent the triangle
area properly:

Area =
27

2
= 13.5 (22)
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5 Practical Implications

Profit Distribution

The area under the curve from (0,0) to (6,0) represents the total potential profit within
the market. By evaluating the integral of the function f(x) = 1

2
x + 3, we gain a

comprehensive understanding of how profit is distributed across different price and
quantity dimensions. This approach allows us to visualize the profit dynamics and
how they correlate with varying market conditions.

The proposed hypothesis in this paper, which posits that the area of a marketplace
(modeled as a non-equilateral triangle) is directly related to the profit distribution
between unequal-sized firms in arbitrage situations, aligns well with the findings from
the Geometric Arbitrage Theory and related studies. By leveraging geometric modeling
and integral calculus, this hypothesis extends the current understanding of how market
structure influences arbitrage opportunities and profit distribution. Integrating these
advanced mathematical tools can provide a more comprehensive analysis and contribute
valuable insights to the field of financial economics.

Arbitrage Opportunities

Segments of the curve can highlight potential arbitrage opportunities where price devi-
ations from equilibrium can be exploited. For example, if the market price at a specific
quantity deviates significantly from the average price represented by f(x) = 1

2
x + 3,

traders can identify buy-low and sell-high opportunities within these segments. This
strategic insight is crucial for optimizing trading strategies and maximizing returns in
commodity markets.

Market Efficiency

The integral result indicating a net zero profit distribution when considered across the
entire market aligns with the hypothesis of market efficiency. This balance suggests
that any unexploited arbitrage opportunities are counterbalanced by the overall gains
and losses within the market space. Thus, the market’s structure inherently promotes
efficiency, ensuring that profit opportunities are equally accessible and balanced among
participants.

6 Literature Review

The relationship between market structure and arbitrage opportunities has been a
subject of considerable interest in financial economics. Traditional arbitrage theories
primarily focus on price discrepancies, often neglecting the structural aspects of the
marketplace. However, recent advancements in geometric and topological methods
have provided new insights into the modeling of arbitrage and profit distribution.

Geometric Arbitrage Theory

Simone Farinelli and Hideyuki Takada have developed a conceptual framework known
as Geometric Arbitrage Theory (GAT), which links arbitrage modeling in generic mar-
kets with spectral theory. This theory rephrases classical stochastic finance using differ-
ential geometric terms to characterize arbitrage conditions such as No-Free-Lunch-with-
Vanishing-Risk (NFLVR) and No-Unbounded-Profit-with-Bounded-Risk (NUPBR). The
GAT approach models markets as principal fibre bundles, with the curvature of these
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bundles measuring the ”instantaneous arbitrage capability” (Farinelli & Takada, 2021).
This innovative method utilizes gauge symmetries to reformulate asset models, provid-
ing a robust mathematical foundation for understanding arbitrage.

The GAT framework incorporates stochastic differential geometry to describe the finan-
cial features of markets, including no-arbitrage and equilibrium. By modeling markets
as principal fibre bundles, GAT offers a natural connection that links financial instru-
ments with their term structures. The zero eigenspace of the connection Laplacian
parameterizes all risk-neutral measures equivalent to the statistical one, thus extend-
ing classical asset bubble theories to markets that do not satisfy the NFLVR condition
(Farinelli & Takada, 2021).

Stochastic Differential Geometry and Market Dynamics

The use of stochastic differential geometry in financial modeling has been further ex-
plored in studies focusing on the dynamics of arbitrage under different mathematical
frameworks. These studies often address the limitations of traditional arbitrage theo-
ries by incorporating stochastic processes and differential geometry to better capture
market behaviors. For instance, the connection Laplacian’s spectrum in GAT is used
to parameterize risk-neutral measures, offering a novel way to explore market dynamics
and arbitrage opportunities (Farinelli & Takada, 2021).

Comparative Studies and Applications

Other comparative studies, such as those on reflected geometric Brownian motion and
implied volatility surfaces, have demonstrated the applicability of geometric and topo-
logical methods in financial markets. These models often integrate advanced mathe-
matical techniques to analyze arbitrage and profit distribution, providing deeper in-
sights into market structures. The principal fibre bundle representation in GAT, for
example, allows for a comprehensive analysis of market spaces, highlighting the role of
topological and geometric properties in arbitrage (Farinelli & Takada, 2021).

7 Methods

The algorithm constructs price-volume curves for each security. These curves represent
the relationship between the price of the security and the volume traded over time.
The area under the price-volume curve for each security is calculated using integral
calculus. This area serves as a comparative measure to identify arbitrage opportunities.
The algorithm identifies arbitrage opportunities by comparing the areas under the
price-volume curves of the different securities. The security with the lowest area is
considered for a ”buy low” recommendation, while the security with the highest area is
considered for a ”sell high” recommendation. The areas under the price-volume curves
reflect how profits are distributed in relation to the trading volume for each security.
The comparison of these areas provides insights into market efficiency. A significant
difference in areas may indicate inefficiencies that can be exploited through arbitrage.

8 Results

Applying the geometric model and integral calculus to real market data helps reveal
patterns in profit distribution across different market segments. For example, when
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analyzing arbitrage in geographically distinct markets for a commodity, larger mar-
ket areas may exhibit greater profit disparities due to differential access to arbitrage
opportunities.

A pertinent case study involves the NYMEX and ICE oil markets from January 2022
to January 2024. This analysis not only scrutinizes the price-volume relationship but
also forecasts future prices to identify potential arbitrage opportunities. The results
show that, based on the calculated areas, the security with the lowest area is CL=F
(NYMEX WTI Crude Oil), suggesting a buy opportunity. Conversely, BZ=F (ICE
Brent Crude Oil) has the highest area, suggesting a sell opportunity:

Table 1: Current and Forecasted Market Summaries

Summary Type Metric Details

Current Market Summary Profit Distribution
Patterns

Analyzed profit
distribution patterns
based on area differences.

Market Efficiency Evaluated market
efficiency based on
arbitrage opportunities.

Arbitrage Opportunities Buy Low (CL=F):
72.73934464353934
Sell High (BZ=F):
77.08473977714127

Forecasted Market
Summary

Profit Distribution
Patterns

Analyzed profit
distribution patterns
based on area differences.

Market Efficiency Evaluated market
efficiency based on
arbitrage opportunities.

Forecasted Arbitrage
Opportunities

Buy Low (CL=F):
74.94653699613328
Sell High (BZ=F):
76.84518699615778

The initial analysis of the historical data from NYMEX and ICE markets yielded crit-
ical insights. The profit distribution patterns were analyzed based on area differences
derived from integral calculus. This approach facilitated the evaluation of market effi-
ciency and identification of arbitrage opportunities. Specifically, the analysis suggested
buying low at $72.74 and selling high at $77.08. Figure 3 below breaks down price by
volume for this historical period. Figure 4 shows historical closing price from January
2022 - January 2024.
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Figure 3: Price-Volume Curves for
NYMEX and ICE Markets (January 2022
- January 2024)

Figure 4: NYMEX WI and ICE Brent
Crude Oil Closing Prices Over Time

To forecast future prices, Autoregressive Integrated Moving Averages (ARIMA) models
were employed. The best candidates were identified based on the lowest AIC scores
using a stepwise search. For NYMEX, the best model was ARIMA(1,0,1)(2,1,0) with an
AIC of 2, 483.33, and for ICE Brent Crude Oil, the best model was ARIMA(3,0,2)(2,1,0)
with an AIC of 2, 481.72. These models are suitable for time series data as they capture
trends and patterns in historical data to make informed predictions about future prices.
The data was sourced from Yahoo Finance, and the frequency was set to business days
to ensure continuity. Missing values were handled through forward filling. Figure 5
below figure shows the forecasted prices.

Figure 5: NYMEX WI and ICE Brent Crude Oil 60 Day ARIMA Forecast

Traders can use the identified buy low and sell high recommendations to potentially
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profit from price discrepancies between the two. The analysis provides insights into
the relationship between trading volume and price movements, which can be valuable
for understanding market dynamics.

By incorporating the price-volume relationship through the area calculation, the algo-
rithm provides a systematic approach to identify arbitrage opportunities. This rela-
tionship indirectly influences the buy/sell decisions by serving as a basis for comparison
between different securities.

9 Limitations

Several limitations need to be acknowledged. First, the model simplifies market dy-
namics, potentially overlooking some complexities of real-world markets. Second, the
assumption that the market space can be accurately represented as a non-equilateral
triangle may not always hold true.

The effectiveness of this method heavily relies on the availability and quality of high-
resolution price and volume data. Inconsistent or incomplete data could undermine its
effectiveness. The method involves complex calculations, which might require signif-
icant computational resources, especially when applied to multiple securities or large
datasets. Markets are dynamic, and the introduction of a new arbitrage identifica-
tion method could lead to changes in market behavior as participants adapt to and
potentially exploit the new approach.

10 Conclusion

This geometric approach offers new insights into market structure and arbitrage op-
portunities by representing market space as a non-equilateral triangle. It highlights the
dynamics between price and volume, uncovering hidden arbitrage opportunities across
different segments. Integrating real market data bridges theoretical frameworks with
practical trading, with areas under price-volume curves indicating market efficiency
and varying arbitrage opportunities. This method identifies profitable trading points
and illustrates how market space shapes profit distribution patterns.
The 60-day forecast extends this analysis into future market dynamics using the ARIMA
model, which captures trends and patterns in time series data. This allows for advanced
evaluation of arbitrage opportunities, predicting future prices with notable accuracy.
The forecast suggests buying low at 74.95andsellinghighat76.85, indicating stability in
arbitrage potential. Future research could refine this model by incorporating advanced
machine learning techniques and exploring broader applications in finance, such as the
impact of external economic factors and high-frequency trading data for more granular
insights.
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11 Appendix: Market Space Dynamics Algorithm

Algorithm 1 Market Space Dynamics Analysis

1: Input: Historical price and volume data for commodities from multiple markets
2: Output: Visualization and analysis of profit distribution and arbitrage opportu-

nities
3: Step 1: Data Initialization and Collection
4: Load and preprocess historical price and volume data
5: Define market space vertices
6: Step 2: Define Market Functions
7: Define price-volume functions for each market segment
8: fmarket1(x) = (price slopemarket1 × x) + price interceptmarket1

9: fmarket2(x) = (price slopemarket2 × x) + price interceptmarket2

10: Step 3: Calculate Areas Using Integral Calculus
11: Function CalculateArea(f(x), lower limit, upper limit) returns area

12: area =
∫ upper limit

lower limit
f(x) dx

13: returnarea
14: Compute areas for each security
15: for each security do
16: areasecurity = CalculateArea(fsecurity, lower limit, upper limit)
17: end for
18: Step 4: Plot Price-Volume Curves
19: Function PlotPriceVolumeCurve(f(x), lower limit, upper limit)
20: Generate and plot x and y values
21: Shade area under the curve and annotate key points
22: Visualize price-volume curves for each market
23: for each market do
24: PlotPriceVolumeCurve(fmarket, lower limit, upper limit)
25: end for
26: Step 5: Analyze Arbitrage Opportunities
27: Function AnalyzeArbitrageOpportunities(area1, area2) returns opportunities
28: if area1 ̸= area2
29: Identify significant price deviations and highlight opportunities
30: returnopportunities
31: Compare areas and identify arbitrage opportunities
32: opportunities = AnalyzeArbitrageOpportunities(areamarket1, areamarket2)
33: Step 6: Interpret Results
34: Function InterpretResults(opportunities) returns summary
35: Assess profit distribution patterns and market efficiency
36: Summarize findings return summary
37: Summarize findings for the markets
38: summary = InterpretResults(opportunities)
39: Print summaries
40: End Algorithm
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Appendix: MarketSpaceDynamics Class Implemen-

tation in Python

import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import quad
from pmdarima import auto_arima

class MarketSpaceDynamics:
def __init__(self , tickers , start_date , end_date ,

forecast_steps =365, labels=None):
self.tickers = tickers
self.start_date = start_date
self.end_date = end_date
self.forecast_steps = forecast_steps
self.labels = labels if labels is not None else {ticker: ticker

for ticker in tickers}
self.data = {}
self.fetch_data ()
self.preprocess_data ()

def fetch_data(self):
for ticker in self.tickers:

data = yf.download(ticker , start=self.start_date ,
end=self.end_date)

data = data.asfreq("B") # Set frequency to business day
data = data.fillna(method="ffill") # Forward fill missing

values
self.data[ticker] = data

def preprocess_data(self):
for ticker in self.tickers:

self.data[ticker ]["Price"] = self.data[ticker ]["Close"]
self.data[ticker ]["Volume"] = self.data[ticker ]["Volume"]

def price_volume_function(self , data , x):
return np.interp(x, data["Volume"], data["Price"])

def calculate_area(self , func , lower_limit , upper_limit):
area , _ = quad(func , lower_limit , upper_limit)
return area

def plot_price_volume_curve(self , func , lower_limit , upper_limit ,
label):
x_values = np.linspace(lower_limit , upper_limit , 100)
y_values = func(x_values)
plt.plot(x_values , y_values , label=label)
plt.fill_between(x_values , y_values , alpha =0.2)

def plot_price_volume_curves(self):
volume_range = np.linspace(

min([self.data[ticker ]["Volume"].min() for ticker in
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self.tickers ]),
max([self.data[ticker ]["Volume"].max() for ticker in

self.tickers ]),
100,

)
plt.figure(figsize =(10, 6))
for ticker in self.tickers:

self.plot_price_volume_curve(
lambda x: self.price_volume_function(self.data[ticker],

x),
volume_range.min(),
volume_range.max(),
self.labels[ticker],

)
plt.xlabel("Volume")
plt.ylabel("Price")
plt.title("Price -Volume Curves")
plt.legend ()
plt.show()

def plot_closing_prices(self):
plt.figure(figsize =(10, 6))
for ticker in self.tickers:

plt.plot(self.data[ticker ].index ,
self.data[ticker ]["Close"], label=f"{self.labels[ticker ]}
Historical")

plt.xlabel("Date")
plt.ylabel("Price")
plt.title("Closing Prices Over Time")
plt.legend ()
plt.show()

def forecast_prices(self , data , steps):
model = auto_arima(

data["Close"],
start_p=1,
start_q=1,
max_p=3,
max_q=3,
seasonal=True ,
m=12,
stepwise=True ,
suppress_warnings=True ,
D=1,
trace=True ,
n_jobs=1,

)
forecast = model.predict(n_periods=steps)
forecast_index = pd.date_range(start=data.index[-1] +

pd.Timedelta(days =1), periods=steps , freq="B")
forecast_df = pd.DataFrame ({"Date": forecast_index , "Forecast":

forecast })
return forecast_df

def plot_forecasts(self , steps):
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forecast_dfs = {}
plt.figure(figsize =(10, 6))
for ticker in self.tickers:

forecast_df = self.forecast_prices(self.data[ticker], steps)
forecast_dfs[ticker] = forecast_df
plt.plot(self.data[ticker ].index ,

self.data[ticker ]["Close"], label=f"{self.labels[ticker ]}
Historical")

plt.plot(forecast_df["Date"], forecast_df["Forecast"],
label=f"{self.labels[ticker ]} Forecast", linestyle="--")

plt.xlabel("Date")
plt.ylabel("Price")
plt.title("Price Forecast")
plt.legend ()
plt.show()
return forecast_dfs

def calculate_forecasted_areas(self , forecast_dfs):
volume_range = np.linspace(

min([self.data[ticker ]["Volume"].min() for ticker in
self.tickers ]),

max([self.data[ticker ]["Volume"].max() for ticker in
self.tickers ]),

100,
)

def price_volume_function_forecast(data , forecast_df , x):
return np.interp(

x,
np.concatenate ([data["Volume"], [data["Volume"].max()] *

len(forecast_df)]),
np.concatenate ([data["Price"], forecast_df["Forecast"]]),

)

forecast_areas = {}
for ticker in self.tickers:

forecast_areas[ticker] = self.calculate_area(
lambda x:

price_volume_function_forecast(self.data[ticker],
forecast_dfs[ticker], x),

volume_range.min(),
volume_range.max(),

)
return forecast_areas

def analyze_arbitrage_opportunities(self , areas):
min_area = min(areas.values ())
max_area = max(areas.values ())
min_ticker = min(areas , key=areas.get)
max_ticker = max(areas , key=areas.get)
return {"buy_low": (min_area , min_ticker), "sell_high":

(max_area , max_ticker)}

def adjust_arbitrage_opportunities(self , opportunities ,
volume_range_max):
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opportunities["buy_low"] = (opportunities["buy_low"][0] /
volume_range_max , opportunities["buy_low"][1])

opportunities["sell_high"] = (opportunities["sell_high"][0] /
volume_range_max , opportunities["sell_high"][1])

return opportunities

def interpret_results(self , opportunities , forecast=False):
summary = "Profit Distribution Patterns: Analyzed profit

distribution patterns based on area differences .\n"
summary += "Market Efficiency: Evaluated market efficiency based

on arbitrage opportunities .\n"
if forecast:

summary += "Forecasted "
summary += "Arbitrage Opportunities :\n"
if opportunities:

summary += f" Buy Low ({ opportunities[’buy_low ’][1]}):
{opportunities[’buy_low ’][0]}\n"

summary += f" Sell High ({ opportunities[’sell_high ’][1]}):
{opportunities[’sell_high ’][0]}\n"

return summary

def run_analysis(self):
volume_range = np.linspace(

min([self.data[ticker ]["Volume"].min() for ticker in
self.tickers ]),

max([self.data[ticker ]["Volume"].max() for ticker in
self.tickers ]),

100,
)

# Calculate current areas
current_areas = {ticker: self.calculate_area(lambda x:

self.price_volume_function(self.data[ticker], x),
volume_range.min(), volume_range.max()) for ticker in
self.tickers}

# Analyze current arbitrage opportunities
current_opportunities =

self.analyze_arbitrage_opportunities(current_areas)
current_opportunities =

self.adjust_arbitrage_opportunities(current_opportunities ,
volume_range.max())

current_summary = self.interpret_results(current_opportunities)

# Forecast future prices
forecast_dfs = self.plot_forecasts(self.forecast_steps)

# Calculate forecasted areas
forecast_areas = self.calculate_forecasted_areas(forecast_dfs)

# Analyze forecasted arbitrage opportunities
forecasted_opportunities =

self.analyze_arbitrage_opportunities(forecast_areas)
forecasted_opportunities =

self.adjust_arbitrage_opportunities(forecasted_opportunities ,
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volume_range.max())
forecasted_summary =

self.interpret_results(forecasted_opportunities ,
forecast=True)

# Print summaries
print("Current Market Summary:")
print(current_summary)

print("\nForecasted Market Summary:")
print(forecasted_summary)

# Print forecasted dataframes
for ticker , forecast_df in forecast_dfs.items():

print(f"{ticker} Forecast for the next {self.forecast_steps}
days:")

print(forecast_df)

return current_summary , forecasted_summary

# Example usage:
labels = {

"CL=F": "NYMEX WTI Crude Oil",
"BZ=F": "ICE Brent Crude Oil",

}

analysis = MarketSpaceDynamics(
["CL=F", "BZ=F"],
"2022 -01 -01",
"2024 -01 -01",
forecast_steps =60,
labels=labels ,

)
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